Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(7): 103739, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678973

RESUMO

The poultry industry faces significant challenges in controlling Salmonella contamination while reducing antibiotic use, particularly with the emergence of Salmonella Heidelberg (SH) strains posing risks to food safety and public health. Probiotics, notably lactic acid bacteria (LAB) and Saccharomyces boulardii (SB) offer promising alternatives for mitigating Salmonella colonization in broilers. Understanding the efficacy of probiotics in combating SH and their impact on gut health and metabolism is crucial for improving poultry production practices and ensuring food safety standards. This study aimed to assess the inhibitory effects of LAB and SB against SH both in vitro and in vivo broilers, while also investigating their impact on fecal metabolites and caecal microbiome composition. In vitro analysis demonstrated strong inhibition of SH by certain probiotic strains, such as Lactiplantibacillus plantarum (LP) and Lacticaseibacillus acidophilus (LA), while others like SB and Lactobacillus delbrueckii (LD) did not exhibit significant inhibition. In vivo testing revealed that broilers receiving probiotics had significantly lower SH concentrations in cecal content compared to the positive control (PC) at all ages, indicating a protective effect of probiotics against SH colonization. Metagenomic analysis of cecal-content microbiota identified predominant bacterial families and genera, highlighting changes in microbiota composition with age and probiotic supplementation. Additionally, fecal metabolomics profiling showed alterations in metabolite concentrations, suggesting reduced oxidative stress, intestinal inflammation, and improved gut health in probiotic-supplemented birds. These findings underscore the potential of probiotics to mitigate SH colonization and improve broiler health while reducing reliance on antibiotics.

3.
AMB Express ; 12(1): 64, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35650313

RESUMO

Phage display (PD) is a tool for developing new molecules to control pathogens. Peptides selected by PD are commonly synthesised and tested, but the use of phage M13 displaying the selected peptides as a direct biding in the intestinal tract has not yet been tested. This study evaluated whether phage M13 can remain viable in the chicken gastrointestinal tract and whether it causes injury or humoral immune response. We inoculated phage M13 or E. coli ER2738 (ECR) infected with M13 into birds at different ages. We found the virus in faeces at 5 or 13 days after inoculation, just when it infected the ECR. The presence of phage M13 or ECR did not result in gut injuries and had no impacts on weight gain and bird health. Furthermore, the levels of IgY were similar in all treatments, which indicates that the virus can be used in chicken until 42 days without being recognised by the immune system. This work provides a scientific basis for the use of PD as a tool in numerous applications to control different pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...